summaryrefslogtreecommitdiff
path: root/date_calculator.py
blob: bca7dda33f2b715f4aba9857eaf1d63343d7ce25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from datetime import datetime, timedelta
from dateutil.relativedelta import relativedelta
import math

class DateCalculator:
    @staticmethod
    def sort_periods(periods):
        return sorted(periods, key=lambda p: (p[0], p[1]))
    
    @staticmethod
    def truncate_periods(periods, launch):
        considered_periods = []
        for start, end, id in periods:
            # print(start)
            # print(launch)
            truncated_start = max(start, launch)
            if truncated_start <= end:
                considered_periods.append((truncated_start, end, id))
        return considered_periods

    @staticmethod
    def round_periods(periods):
        rounded_periods = []
        total_months = 0

        last_end = None
        
        for start, end, id in periods:
            if last_end and start <= last_end:
                start = last_end + timedelta(days=1)
            if start > end:
                continue
            year_diff = end.year - start.year
            month_diff = end.month - start.month
            months = year_diff * 12 + month_diff
            if end.day >= start.day:
                months += 1
            rounded_end = start + relativedelta(months=months) - timedelta(days=1)
            
            rounded_periods.append((start, rounded_end, id))
            total_months += months
            last_end = rounded_end
        
        return rounded_periods, total_months

    @staticmethod
    def adjust_periods(periods):
        """Adjust overlapping periods without merging.
        - Later periods overlapping with a previous one have their start moved to the previous end + 1 day.
        - Periods fully contained in a previous one are discarded.
        """
        if not periods:
            return []

        adjusted = []
        for start, end, pid in periods:
            if not adjusted:
                adjusted.append((start, end, pid))
                continue

            last_start, last_end, last_pid = adjusted[-1]

            if start <= last_end:
                # Fully contained in previous period → discard
                if end <= last_end:
                    continue
                # Overlaps head; push start to the day after last_end
                new_start = last_end + timedelta(days=1)
                if new_start <= end:
                    adjusted.append((new_start, end, pid))
                # else new_start > end → discard
            else:
                adjusted.append((start, end, pid))

        return adjusted

    @staticmethod
    def find_non_overlapping_periods(existing_periods, test_period):
        
        test_start, test_end, id = test_period
        non_overlapping_periods = []
        
        for start, end, _ in existing_periods:
            if test_end < start:
                non_overlapping_periods.append((test_start, test_end, id))
                return non_overlapping_periods
            
            elif test_start > end:
                continue
            
            else:
                if test_start < start:
                    non_overlapping_periods.append((test_start, start - timedelta(days=1), id))
                
                test_start = end + timedelta(days=1)
        
        if test_start <= test_end:
            non_overlapping_periods.append((test_start, test_end, id))
        
        return non_overlapping_periods

    @staticmethod
    def calculate_prediction(launch_date, duration, **kwargs):
        prediction_start = launch_date + duration - timedelta(days = 1)
        
        events = []
        half_projects = []
        full_projects = []
        other_kwargs = {}

        for k, v in kwargs.items():
            if k == "Sonstige":
                events.extend(v)
            elif k == "EZ 50%":
                half_projects.extend(v)
            elif k == "EZ 100%":
                full_projects.extend(v)
            elif k == "EZ pauschal":
                full_projects.extend(v)
            else:
                other_kwargs[k] = v

        events = DateCalculator.sort_periods(events)
        half_projects = DateCalculator.sort_periods(half_projects)
        full_projects = DateCalculator.sort_periods(full_projects)

        considered_events = DateCalculator.truncate_periods(events, launch_date)
        considered_full_projects = DateCalculator.truncate_periods(full_projects, launch_date)
        considered_half_projects = DateCalculator.truncate_periods(half_projects, launch_date)

        considered_full_projects_rounded, months = DateCalculator.round_periods(considered_full_projects)

        non_overlapping_half_projects = []
        for test_interval in considered_half_projects:
            non_overlapping_half_projects.extend(
                DateCalculator.find_non_overlapping_periods(considered_full_projects_rounded, test_interval)
            )

        considered_half_projects_rounded, months2 = DateCalculator.round_periods(non_overlapping_half_projects)
    
        all_projects_merged = DateCalculator.sort_periods(considered_full_projects_rounded + considered_half_projects_rounded)
        merged_event_periods = DateCalculator.adjust_periods(considered_events)

        non_overlapping_event_periods = []
        for test_interval in merged_event_periods:
            non_overlapping_event_periods.extend(
                DateCalculator.find_non_overlapping_periods(all_projects_merged, test_interval)
            )
        
        total_months = months + math.ceil(months2 / 2)
        total_days = sum((end - start).days + 1 for start, end, _ in non_overlapping_event_periods)
        prediction = launch_date + duration + relativedelta(months=total_months) + timedelta(days=total_days-1)
        
        prediction = min(prediction, prediction_start + relativedelta(years = 6))

        return prediction, considered_full_projects_rounded + considered_half_projects_rounded + non_overlapping_event_periods